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COMPARISON BETWEEN THE ADHERENCE OF A RIGID
AXISYMMETRICAL CONE AND A TRUNCATED ONE, IN
ADHESIVE CONTACT ON AN ELASTIC HALF-SPACE

Michel Barquins
Laboratoire de Physique et de M�eecanique des Milieux H�eet�eerogènes,
ESPCI, Paris, France

We compare the equilibrium contacts and the kinetics of adherence of an axisym-
metrical rigid cone and a flat-ended one with the same angle, applied against the
flat and smooth surface of a soft elastomer sample (unfilled vulcanized natural
rubber, cured with dicumyl peroxide), with the help of fracture mechanics concepts
which can easily be introduced in this class of problems by using Sneddon’s sol-
ution (1965) of Boussinesq’s problem extended to all axisymmetric adhesive
punches with a convex profile. The kinetics of adherence are measured when an
imposed tensile force is applied in order to disturb the size of the contact area. Var-
iations of the strain energy release rate, G, and of the associated dissipation func-
tion U ¼ (G�w)=w, where w is the Dupr�ee energy of adhesion, are studied as a
function of the parameter, aT � V, in which V is the crack propagation speed at
the interface between a cone and a truncated one made of glossy Plexiglass1,
and the rubber sample (the limit of the contact is considered as a crack tip), and
aT, is the shift factor of the Williams-Landel-Ferry transformation. As expected,
a master curve U(V) is found, confirming the variation of U as the power function
V0:55, at fixed temperature, as recently established by Barquins et al. in adherence
of a flat ended sphere and cone in pull-off=push-on tests, adherence and rolling of
cylinders experiments and rebound of balls tests, with the same elastomer. Present
results lead to propose one to write U ¼ k�(aT � V)0:55, k ¼ 2520 and V being valued
using S.I. units, for the reference temperature h¼25�C, with a quite good accuracy
in the order of 1%.

Keywords: Natural rubber; PMMA perfect and flat-ended conical punches; Fracture
mechanics and nondestructive testing; Adhesion tests and kinetics of adherence
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INTRODUCTION

An earlier study [1], drawing upon Sneddon’s 1965 generalisation of
Hertz’s problem to all axisymmetrical rigid punches with a convex
profile [2], investigated the theoretical conditions of the equilibrium
adhesive contact between a cone and the smooth and flat surface of
an elastic half-space as a soft natural rubber sample. To take into
account the molecular attraction forces of van der Waals type in
the case of elastomers, as has been previously demonstrated [3], the
constant of integration, v(1), appearing in formulae and corre-
sponding to a rigid vertical displacement, is assumed nonzero
[1, 9, 13]. Experiments are performed using an unfilled vulcanised
natural rubber half-space, cured with dicumyl peroxide (modulus of
elasticity E ¼ 0:89MPa, Poisson ratio’s m ¼ 0:5 and glass transition
temperature Tg ¼ 201K), and a rigid transparent cone and a trunc-
ated one, optically smooth, made of Plexiglass1 (PMMA), with a
half-angle a ¼ p=2� b ¼ 85 degrees (Figures 1 and 2). When the
normal applied mass, m, is changed, the equilibrium, which
depends on the intensity of van der Waals forces, is disturbed. Such
a situation will lead either to a separation of the two bodies or to a
new equilibrium, depending on the value of the new applied active
mass.

Since 1996, Barquins et al. [4–10] have conducted various experi-
ments into adherence kinetics and the adhesive behaviour of several
axisymmetrical rigid punches and of cylindrical rollers. Moreover,
they have performed rebound tests of rigid balls on smooth natural
rubber half-spaces. This research has shown that the dissipation func-
tion, U, for viscoelastic losses located at the edge of the contact zone,
which can be inferred from the strain energy release rate G½11�,
U ¼ ðG�wÞ=w, where w denotes the Dupr�ee adhesion energy, varies
over a wide range of propagation speeds as a power function of the
crack propagation speed, U � V0:55.

The main goal of this article is to compare behaviours of a rigid axi-
symmetrical perfect cone and a truncated one with the same angle, in
terms of equilibrium conditions of adhesive contacts against a rubber
surface, and the kinetics of separation when a new applied load is
imposed. It is also shown that the dissipation function, U, remains a
power function (0.55) of the variation with time of contact area’s
radius (crack propagation speed) for the specific type of rubber used
(unfilled natural rubber) at fixed temperature, and that this function,
U, can be written U ¼ k � ðaT � VÞ0:55 with k ¼ 2520 and speed V being
valued using S.I. units, for the reference temperature h¼ 25�C, with
a quite good accuracy in the order of 1%.
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FIGURE 1 Schematic views of the profile between a rigid axisymmetric
conical punch and the flat and smooth surface of an elastic half-space: (a) as
soon as the mass mi (corresponding force Pi ¼ mi � g) is applied; (b) at
equilibrium under the constant massmi; and (c) at the beginning of the detach-
ment when a constant massma smaller thanmi is applied, corresponding to the
load Pa ¼ ma � g, which can be less compressive than Pi ¼ mi � g, or to be a ten-
sile force (Pi ¼ ma � g < 0), which leads ineluctably to the rupture of the contact.
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FIGURE 2 Schematic views of the profiles: (a) of the adhesive contact
between a flat-ended cone and the flat and smooth surface of an elastic half-
space at equilibrium, under the constant compressive mass mi (profile corre-
sponding to the Figure 1b observed for a perfect conical punch); and (b) of
the rubber surface when a tensile mass ma is imposed, the contact diameter
being greater than the flat one and (c) if the contact area is smaller than
the flat zone size.
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ADHESIVE CONTACT OF AN AXISYMMETRICAL
RIGID CONE

Sneddon [2] has derived a solution of the axisymmetric Boussinesq
problem from which he deduced simple formulae for the depth of pen-
etration, d, of the tip of a punch of convex arbitrary profile, for the total
load, P, which must be applied to the punch to achieve this pen-
etration, for distribution of pressure, rzðr; 0Þ, under the punch at the
distance, r, of the symmetry axis inside the contact area, and for the
displacement, uzðr; 0Þ, of the surface at the distance, r, of the contact
center outside the contact area. From these formulae [1, 9, 12–13]
and from the shape function of a perfect rigid conical punch, given by

f ðxÞ ¼ a � x � tan b; ð1Þ

where a is the radius of the contact area and x the normalized distance
x ¼ r=a from the center of the circular contact, we can deduce the ver-
tical penetration of the perfect rigid cone. Indeed, for all the axisym-
metrical punches with continuous and convex profile, Sneddon [2]
lets the integration constant v(1) ¼ 0 in order to have a finite normal
stress at the edge of the contact area, and he uses this criterion to de-
termine the penetration, d. For a conical punch, the classical result is

d ¼ p
2
� a � tan b: ð2Þ

As demonstrated earlier [3], the hypothesis vð1Þ ¼ 0 is not imperative,
and the case vð1Þ 6¼ 0 allows one to describe precisely the adhesive con-
tacts of axisymmetrical punches, as a perfect cone or a flat-ended one,
in the present case, taking into account the Dupr�ee energy of adhesion,
w ¼ c1 þ c2 � c12, of the facing solids (the ci and cij are the surface and
interfacial energies, respectively). It is usual now [3] to consider the
parameter KI:

KI ¼ � E

2ð1� m2Þ �
ffiffiffi
p
a

r
� vð1Þ; ð3Þ

so that calculations of the stress, rz, inside the area of contact near the
edge and the discontinuity of displacement [uz] outside it (Figure 1b)
lead to formulae found in fracture mechanics in opening mode (Mode
I) and plane deformation, and KI is the stress intensity factor. They
appear because the edge of the contact area can be considered as a
crack tip that recedes or advances according to whether the load, P,
increases or decreases. In this case, the strain energy release rate,
G, is given by
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G ¼ 1

2
� 1� m2

E
�K2

I ; ð4Þ

where E is Young’s modulus and m Poisson’s ratio for the elastic half-
space. The coefficient (1/2) makes allowance for the fact that the rigid
punch undergoes no deformationwhen applied against the elastic solid.

If P1 represents the load which gives rise to the same radius of con-
tact area in the absence of molecular attraction force (i:e:; vð1Þ ¼ 0),
and if we denote by P the actual applied load (P1 > P) when these
forces do come into play (i:e:; vð1Þ 6¼ 0), it can be shown [3] that

P1 � P ¼ � p � E � a
1� m2

� vð1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p � a3

p
� KI:

Thus the strain energy release rate, G, given by the relation in Equa-
tion (4), may be written as

G ¼ 1� m2

E
� ðP1 � PÞ2

8p � a3
: ð5Þ

As previously demonstrated [13–14], this relation is perfectly univer-
sal, which is available for all axisymmetrical punches with convex
profile, the load P1 being only dependent on the shape of the punch
and on the elastic properties of the rubber-like material on which this
punch is applied.

Taking into account the shape function for a perfect conical punch,
it was shown [1, 9, 13] that the vertical displacement is given by

d ¼ p � a
2

� tan b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p � a �w � 1� m2

E

r
; ð6Þ

so that the load, P, the radius, of the contact area, a, and the pen-
etration, d, in the elastic half-space are linked by the relation

P ¼ 2E � a
1� m2

� d� p � a
4

� tanb
� �

; ð7Þ

which is the state equation of the system.
For an adhesive contact of a rigid axisymmetric conical perfect

punch, it is well known [9, 13] that the apparent load, P1, is equal to

P1 ¼ p � E
2ð1� m2Þ � a

2 � tan b; ð8Þ

and it can be verified that the connection of the elastic half-space to
the cone is tangential if vð1Þ ¼ 0 (Figure 1a), and vertical if vð1Þ 6¼ 0
(geometry of fracture mechanics, as shown on Figures 1b and 1c).
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Due to the intervention of molecular attraction forces a finite area
of contact exists at equilibrium under zero load, and the value of the
corresponding radius, aðP¼0Þ, is obtained from Equations (6) and (7):

aðP¼0Þ ¼
1� m2

2p � E �w � 8

tan b

� �2

: ð9Þ

Moreover, these molecular attraction forces allow one to apply a
tensile force, at equilibrium, whose critical value, Pc, is given [1] by
G ¼ w and ð@G=@AÞp ¼ 0; A being the contact area ðA ¼ pa2Þ:

Pc ¼ � 54ð1� m2Þ �w2

p � E � tan3b
: ð10Þ

Pc is the quasistatic force of adherence of a perfect cone at fixed load,
i.e., the ultimate tensile force that can sustain the conical punch in
equilibrium adhesive contact on the elastic half-space.

The radius, ac, of this ultimate equilibrium contact area can be de-
duced from Equation (10) with G ¼ w, P1 and P¼Pc being given by
Equations (8) and (10), respectively:

ac ¼
18ð1� m2Þ �w
p � E � tan2 b

: ð11Þ

Taking into account the value w¼ 43mJ.m�2 (corresponding to experi-
mental data presented in Section 5), the computed value ac¼ 33.5 lm
is found.

As already described for adhesive contacts of perfect spherical
punches and truncated spheres [7], equilibrium measurements were
used in order to verify the value of Young’s modulus of the test ma-
terial, as declared by the elastomer’s manufacturer, whereupon a pre-
cise value for the Dupr�ee energy of adhesion was obtained. This simple
method consists of writing the relation linking the equilibrium contact
radius, a, versus the normal applied load, P (relation in Equation (7),
with d given by Equation (6)), using Equation (5) in which G¼w:

P ¼ p � E � a2 � tan b
2ð1� m2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8p � a3 � E �w

1� m2

r
: ð12Þ

Dividing all the terms of the relation in Equation (12) by a3=2, and
assuming that m¼ 0.5 for the soft natural rubber tested, we obtain

P � a�3=2 ¼ 2p � E � tan b
3

� a1=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32p � E �w

3

r
; ð13Þ
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from which we conclude that P � a�3=2 varies linearly as a function of
the square root of the radius, a, of the contact area and, thus, the
measurement of the slope allows the calculation of Young’s modulus,
E. Finally, the determination of the ordinate at the origin furnishes,
once E is known, the Dupr�ee energy of adhesion, w.

PARTICULAR CASE OF A FLAT-ENDED CONE

Let us consider the particular case of a rigid transparent truncated
cone, optically smooth, made of Plexiglass1 (PMMA), with the same
half-angle, a¼ p=2� b¼ 85 degrees, as previously, whose circular flat
zone (diameter Øflat¼ 2aflat¼ 514 lm) is parallel to the interface. The
particular profile for the adhesive equilibrium contact is schematically
shown in Figure 2a, and its transformation when a tensile force is
imposed is exhibited in Figures 2b and 2c. The shape function of the
punch is now given by [10, 13]

f ðxÞ ¼ 0; for 0 < x < q;

and

f ðxÞ ¼ ðx� qÞ � a � tan b; for x > q;

where q represents the ratio aflat=a.
From Sneddon’s equations [1–3, 10, 13], the vertical penetration of the
truncated cone is

d ¼ 1

2
p � vð1Þ þ a � tan b � cos�1 q; ð14Þ

so that the state equation of the system linking the actual applied
load, P, to the radius, a, of the contact area and the penetration, d,
in the elastic half-space is given by

P ¼ 2E � a � d� a � tan b � ðcos�1 q� q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
Þ

2ð1� m2Þ� :

"
ð15Þ

Obviously, for q¼ 0 (i.e., aflat¼ 0), Equation (15) reiterates the
relationship for an adhesive perfect rigid conical punch (Equation (7)).

Concerning the load, P1, which gives the same radius of contact
when the molecular attraction forces do not act (v(1)¼ 0), its value
for a truncated cone is given by

P1 ¼ a2 � tan b � E

1� m2
� ðcos�1 qþ q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� q2Þ

q
: ð16Þ
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This relation in Equation (16) provides P1¼ 0 if q¼ 1, which exactly
corresponds to the contact of a cylindrical punch with a circular cross
section [11].

The strain energy release rate is thus

G ¼ ðP1 � PÞ2

8p � a3
� 1� m2

E
¼ 1

2p � a � E

1� m2
� ðd� a � tan d � cos�1 qÞ2: ð17Þ

At equilibrium, G¼w, so that the radius of contact area is linked to
the normal applied load, P, by the relation in Equation (5),

P ¼ P1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8p � a3 �w � E

1� m2

r
; ð18Þ

the load P1 being given by the relation in Equation (16). The quasi-
static force of adherence of a flat-ended cone at fixed load, Pc, is given,
as previously, by G¼w and ð@G=@AÞp ¼ 0, A being the contact area
ðA ¼ pa2Þ. The corresponding radius of contact, acrit, is provided by
the solution of the Equation (17):

acrit ¼
9p �w � ð1� m2Þ

2E � tan2 b
� cos�1 qcrit þ

qcritffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2crit

q
0
B@

1
CA
�2

; ð19Þ

with qcrit ¼ aflat=acrit.
Obviously, with qcrit¼ 0 (i.e., aflat¼ 0), the relation in Equation (19)

gives the previous one (relation in Equation (11)) for a perfect rigid
cone. Taking into account the value w¼ 47mJ.m�2 (corresponding to
experimental data presented below), the computed value Øcrit ¼
2acrit ¼ 514:6 lm is just slightly greater than the size of the flat zone
on the truncated cone, Øflat ¼ 514 lm.

KINETICS OF THE ADHERENCE

The adherence kinetics at any equilibrium state (G¼w) is usually
studied by changing the initial applied mass, m. When m is suddenly
lowered for a given contact radius, a, i.e., the apparent load, P1, re-
mains temporarily constant (Equations (14) and (22) for a perfect
and a flat-ended cone, respectively), the strain energy release rate,
G (Equation (5)), rises so that G > w and the solids begin to separate
(Figures 1c and 2b). At the present time, one is quite well aware that
the difference (G�w) represents the applied force per unit length of
the crack [11]; this is the driving force to the ‘‘motor’’ of the crack,
whose speed limit entirely depends on temperature. If we suppose
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that the viscoelastic losses are proportional to w and that they are
localized at the crack tip [15, 16], we may write

G�w � w � UðaT � VÞ; ð20Þ

an identity in which the right-hand term corresponds to the viscous
drag resulting from losses within the crack tip. the dimensionless
function, UðaT � VÞ, entirely depends on the crack propagation speed,
V, and on the absolute temperature, T, of experiments, through the
shift factor, aT, of the WLF transformation [17]:

log10 aT ¼ �8:86ðT � T0Þ
101:6þ T � T0

; ð21Þ

where T0 is a temperature of reference defined from the glassy absol-
ute temperature, Tg, of the rubber sample by T0¼Tgþ 50K.

At each instant, the crack propagates at such a speed, V, that the
corresponding viscoelastic losses precisely offset the shift effect
(G�w), and the speed, V, varies if G is modified when the contact
radius, a, evolves over time. The function U is characteristic of the
types of elastomers tested for propagation in Mode I (opening mode),
and may be directly related to the frequency dependence of the
imaginary component of Young’s modulus [18].

As already announced twenty-five years ago, the main interest of
the Equation (20) is that surface properties (w) and viscoelastic losses
(U) are clearly dissociated from the loading conditions and the system
geometry which only appear in the rate G. Predictions assume only
that (1) the kinetic energy is negligible; (2) the rupture is adhesive,
i.e., the propagation occurs at the interface so that experiments at
equilibrium (V¼ 0) give the Dupr�ee energy of adhesion, w; and (3)
viscous losses are limited to those areas where stress and strain rates
are high, which implies that gross displacements are purely elastic
and the strain energy release rate, G, can still be calculated by the
theory of linear elasticity during crack propagation. Moreover, one
should note that the existence of a unique value assumed for the
Dupr�ee energy of adhesion, which appears in the Equation (20) as a
negative term on the left-hand side and a multiplicative term on the
right-hand side, is a natural result from highly crosslinked material,
so that hysteresis effects between loading and unloading are not
observed.

Starting from the equilibrium state under the mass mi (the corre-
sponding applied force is Pi ¼ mi � g, where g is the acceleration due
to gravity), the study of the kinetics of adherence consists in measur-
ing the evolution over time, t, of the diameter, Ø, of the contact area
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when another mass, ma < mi, is imposed and remained constant. For
that, a new mass, Ma, is imposed at the rear part of the balance (right
side of Figure 3) so that the mass, ma ¼ mi �Ma, is now active. For
each value of the contact diameter, Ø ¼ 2a, the strain energy release
rate, G, can be calculated with the help of the Equation (5), the load
P1 being given by Equations (8) and (16) for the perfect and the trunc-
ated cone, and linked to the crack propagation speed,
V ¼ �ð1=2ÞdØ=dt. Moreover with the determination of w by means
of a simple method, which will be described later, we may plot the
variation of the dissipation function, U, with the help of Equation
(20), as a function of the speed, V, and verify the previous results
for natural rubber [4–10, 19] in regards to the existence of a
master curve representing U in terms of speed, V, raised to the power
0.55.

EXPERIMENTAL RESULTS FOR THE PERFECT CONICAL
PUNCH AND DISCUSSION

Equilibrium and separation kinetics experiments were carried out at
constant temperature h ¼ 26�C and relative humidity RH¼ 53%, be-
tween a rigid axisymmetric conical punch made of Plexiglass1

(PMMA), with the vertical half-angle, b ¼ 5 degrees (Figure 1), and
the smooth, flat surface of a sheet of soft unfilled vulcanized natural
rubber, cured with dicumyl peroxide (Young’s modulus E¼ 0.89MPa,
Poisson’s ratio m ¼ 0:5 and glass transition temperature Tg ¼ 201K),

FIGURE 3 Schematic arrangement of the apparatus used at the present time
to study equilibrium adhesive contact areas of a rigid axisymmetrical punch,
made of transparent material (glossy glass or PMMA), under various applied
masses, and the kinetics of adherence when a constant normal mass is
imposed in order to lead to a new equilibrium state or to the rupture of the
contact area, following its intensity.
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with a thickness, e¼ 6mm, of sufficient width with respect to the con-
tact areas so as to be considered as an elastic half-space.

To study the equilibrium in a first set of experiments, the perfect
conical rigid punch was pressed by a mass,mi (initial force correspond-
ing to Pi ¼ mi � g), during a constant time, ti ¼ 10min, a duration
necessary so that the molecular attraction forces would clearly mani-
fest themselves [20] (the area of contact increases and the surface
takes a fracture mechanics profile as schematically shown on Figures
1a and 1b) against the smooth surface of elastomer, by means of an in-
corporated microscope balance fitted with a video camera to record
both the contact areas and their immediate neighbourhood through
the transparent conical punch (Figure 3) and their precise measure-
ments afterwards, with an accuracy of the order of 2 lm on contact di-
ameter size. This is accomplished in our usual manner, which was
begun twenty-five years ago, using a 16mm camera providing only
24 frames per second [11] instead of 50 at the present time. To exam-
ine the separation kinetics after the time interval, ti, the initial mass,
mi is removed and various active masses ma < mi were applied at the
rear part of the balance. The decrease in contact area radius (as shown
in Figure 1c with regard to Figure 1b, for example) was recorded dur-
ing an interval ta < 30 s, a duration deliberately very shortened with
respect to ti so as to avoid the dwell time effects [20, 21]. Before con-
tact, rubber sample and conical punch surfaces were cleaned with iso-
propyl alcohol and left to dry in a dust-free open air environment for
15min, thus allowing their surfaces to reach an equilibrium with
ambient atmosphere.

Figure 4 shows the equilibrium contact diameters, Ø, between the
perfect cone made of transparent Plexiglass1 (PMMA) with b ¼ 5
degrees and the elastomer surface (natural rubber, NR) as a function
of the initial mass, mi. Due to the intervention of molecular attraction
forces, of van der Waals type, a finite area of contact exists at zero ap-
plied load. Moreover, as well known for spherical indenters, flat
punches, flat-ended spheres, and cone, [7, 9–11, 22–24] equilibrium
contact areas exist under negative loading, but in the case of a conical
punch, unfortunately these tensile loads are very small [1, 9]. As an
example, the quasistatic force of adherence of the perfect rigid cone
at fixed load, given by the relation in Equation (10), is equal to
Pc ¼ �40 lN, with w ¼ 43mJ.m�2, a value which cannot be well veri-
fied with the help of our experimental apparatus whose sensitivity is
of the order of 20 lN.

We have used the equilibrium measurements (Figure 4) and
Equation (13) to verify the value of Young’s modulus for the test
material and to obtain a precise value for the Dupr�ee adhesion
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energy. Figure 5 shows the variation of the parameter P � a�3=2 as a
function of a1=2. The linear regression gives the slope s ¼
ð2=3ÞpE � tan b ¼ 147955Pa, from which can be deduced the value of
Young’s modulus E ¼ 897231Pa, which corresponds very well (with
an accuracy better than 1%) to the value declared by the elastomer’s
manufacturer (E ¼ 0:89MPa). The value at the y axis at the origin
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð32=3Þp � E �w

p
¼ �1142N.m�3=2 furnishes, once E is known, the

Dupr�ee energy of adhesion, w ¼ 43mJ.m�2. This value is slightly smal-
ler than the previous one [6, 7, 19] due to a small increase in the rela-
tive humidity, which is highest in the present experiments. It is well
demonstrated in peeling experiments that an increase in relative
humidity, RH, decreases the Dupr�ee energy of adhesion, w [24].

FIGURE 4 Diameters, Ø, of equilibrium contact areas between the conical
rigid punch and the flat and smooth surface of an elastic solid (soft unfilled
vulcanized natural rubber, cured with dicumyl peroxide, Young’s modulus
E ¼ 0:89MPa, Poisson’s ration m ¼ 0:5, and glassy transition temperature
Tg ¼ 201K) as a function of the normal applied mass, mi. The heavy line joins
experimental data. (Reprinted from D. Vallet and M. Barquins, ‘‘Adhesive con-
tact and kinetics of adherence of a rigid conical punch on an elastic half-space
(natural rubber),’’ Int. J. Adhesion and Adhesives 22, pp. 41–46, copyright
2002, with permission of Elsevier).
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Experiments on the separation of the perfect conical punch were
conducted starting with the same initial mass, mi ¼ 5 gm, maintained
for ti ¼ 10min, which corresponds to the force Pi ¼ 49mN, when ap-
plying different active masses ma ¼ �2;�1;�0:5; 0; 1; 2; 3, and 4 gm.
Figure 6 illustrates how the intensity of the active, mass, ma, influ-
ences the evolution of the separation of the conical punch from the
natural rubber surface. When ma ¼ 0 gm, the contact area tends
toward a new equilibrium with a decrease in the crack propagation
speed, V ¼ �ð1=2ÞdØ=dt. When ma < 0 gm, the evolution of the system
leads to the rupture of the contact area. As expected it is observed that

FIGURE 5 Parameter P � a�3=2 as a function of the square root of the radius
a of the equilibrium contact area of the conical rigid punch (data from
Figure 4). The slope of the rectilinear curve, equal to 147955 Pa, obtained
from a linear regression on data points, allows one to assess the Young
modulus, E ¼ 0:89MPa (assuming that Poisson’s ratio m ¼ 0:5). The y axis
intersection value, equal to �1142 N.m�3=2, provides the Dupr�ee energy of
adhesion w ¼ 43mJ.m�2. (Reprinted after correction of misprints, from
D. Vallet and M. Barquins, ‘‘Adhesive contact and kinetics of adherence of
a rigid conical punch on an elastic half-space (natural rubber),’’ Int.
J. Adhesion and Adhesives 22, pp. 41–46, copyright 2002, with permission of
Elsevier).
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the greater the tensile force associated with the load ma, the earlier is
the contact rupture.

Curves representing contact diameter, Ø, versus time t in Figure 6
and corresponding to active masses �0.5 and �1 gm clearly present
inflexions, that is to say the crack first decelerates and then acceler-
ates until contact is completely broken. At an inflexion point, the crack
propagation speed, V, is minimum, and it is the same thing for the
strain energy release rate, G, so the radius of contact corresponding
to an inflexion point is obtained if the derivative ð@G=@AÞp at given
load, P, is equal to zero. From Equation (5) with P1 given by Equation
(8), one can write [9]

@G

@A

� �
p

¼ 1� m2

16p2 � E � a5
� ðP1 � PÞ � ðP1 þ 3PÞ: ð22Þ

The case P ¼ P1 has no physical meaning because it corresponds to
a nonadhesive contact (w ¼ 0). So, the radius of contact, ainf ,

FIGURE 6 Kinetics of unloading: diameters, Ø, of the contact areas versus
time, t, from the initial mass mi ¼ 5gm, applied on the conical punch for
ti ¼ 10min, to various active masses ma ¼ �2, �1, �0.5, 0, 1, 2, 3, and 4 gm.
The symbol � corresponds to inflexion points.
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corresponding at an inflexion point on a curve aðtÞ at constant nega-
tive load, P, is given by P1 ¼ �3P, and it is equal to

ainf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�6P:ð1� m2Þ
p � E � tanb

s
: ð23Þ

When the applied active separation force corresponds to the mass
ma ¼ �0:5 gm, Equation (23) gives the diameter Øinfð�0:5Þ ¼
2ainfð�0:5Þ ¼ 600 lm, as is clearly shown in Figure 6. Likewise, with
ma ¼ �1 gm, the calculation provides Øinfð�1Þ ¼ 848 lm, a value which
is in good agreement with the corresponding curve on Figure 6. Unfor-
tunately, for ma ¼ �2 gm, Øinfð�2Þ ¼ 1200 lm, this value cannot be
seen on Figure 6, because it is close to the value of the initial contact
diameter Øi ¼ 1284 lm.

In order to study the adherence kinetics as previously described
[4–10, 19, 24], the strain energy release rate was calculated with the
help of Equation (5) for each experimental point on the graph in Fig-
ure 6, the force P1 was evaluated by Equation (8), and the crack propa-
gation speed, V ¼ ð1=2ÞdØ=dt, was deduced from the measured value
of the local slope of the tangent of the curve ØðtÞ at the point under
consideration. Curve A, corresponding to the lower symbols on the
right-hand side in the Figure 7, presents the values calculated using
the results from Figure 6. This curve tends towards the thermodyn-
amic value w ¼ 43mJ.m�2.

EXPERIMENTAL RESULTS FOR THE FLAT-ENDED CONE AND
DISCUSSION

Equilibrium and separation kinetics experiments were carried out at
constant temperature, h ¼ 25�C, and relative humidity, RH ¼ 49%,
between a truncated conical punch, made of Plexiglass1 (PMMA),
with the vertical half-angle b ¼ 5 degrees (Figure 2), having a circular
flat zone of diameter Øflat ¼ 2aflat ¼ 514 lm, and the smooth and flat
surface of a sheet of the same soft unfilled vulcanized natural rubber
(Young’s modulus E ¼ 0:89MPa, Poisson’s ratio m ¼ 0:5 and glass tran-
sition temperature Tg ¼ 201K) with a thickness e ¼ 6mm, as in
previous experiments done with the perfect cone. The curve A in
Figure 8 shows the equilibrium contact diameters, Ø, as a function
of initial compressive masses, mi.

Due to the intervention of molecular attraction forces of van der
Waals type, a finite area of contact exists at zero applied load.
Moreover, as is well known for spherical indenters, flat punches,
flat-ended spheres, and cone [7, 9, 10–11, 19, 22–24], equilibrium
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contact areas exist under negative loading (Figure 8, Curve A). For
comparison, identical measures were found with the perfect cone used
in the previous set of experiments (Figure 8, Curve B). It is very clear
that in the case of contact with a perfect conical punch, the contact
area with the rubber surface can support only very small tensile loads
with regards to the case of a flat-ended cone.

Due to the slight variation of environmental conditions with regard
to those observed in the previous set of experiments performed with
the perfect cone, the equilibrium contact of this perfect cone was again
studied in order to assess the new Dupr�ee energy of adhesion with the
help of the relation in Equation (13). The curve representing P � a�3=2

as a function of the square root of the contact radius a ¼ Ø=2 was
drawn as in Figure 4, and the ordinate at the origin is equal to
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð32=3Þp � E �w

p
¼ �1884N:m�3=2. The corresponding calculated

value w¼ 47mJ.m�2 (using E¼ .89MPa) is slightly greater than
the previous one in the first set of experiments performed with the
perfect cone due to the small decrease in relative humidity (HR¼
49% instead of 53%).

FIGURE 7 Strain energy release rates, G, versus crack propagation speed,
V ¼ ð1=2ÞdØ=dt. Curve A (lower symbols on the right-hand side): experimental
data deduced from Figure 6, this curve tends towards the thermodynamic
value w ¼ 43mJ.m�2. Curve B (higher symbols on the left-hand side): experi-
mental data deduced from Figure 8, this curve tends towards the new Dupr�ee
energy of adhesion w ¼ 47mJ.m�2.
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Experiments on the separation of the flat-ended cone were conduc-
ted starting with the same initial mass mi¼ 5 gm, maintained for
ti¼ 10min, which corresponds to the force Pi¼ 49mN, when applying
two different active masses ma¼�0.6 and �1 gm. Figure 9 compares
the evolution versus time of diameters of contact areas of the truncated
cone (Curves A and A0) and the perfect one (Curves B and B0). It is
clearly demonstrated how a flat zone can cancel or delay, following
the intensity of the active mass, ma, the rupture of the adhesive con-
tact. As previously seen for a perfect conical punch (here Curves B
and B0), it is observed that the greater the tensile force associated
with the load ma, the earlier the contact rupture. It can be pointed
out that the part of the curve A0, for contact diameters smaller than
Øflat¼ 514 lm, obviously corresponds to the rupture of a cylindrical
punch with a circular cross section [11].

In order to study the adherence kinetics, the strain energy
release rate was calculated with the help of Equation (5) for each

FIGURE 8 Diameter, Ø, of equilibrium contact areas between a truncated
cone (flat zone of diameter Øflat ¼ 514 lm) and a perfect one, and the flat and
smooth surface of an elastic solid (same unfilled natural rubber as previously
used in cone study) as a function of the normal applied mass, mi. The lines join
experimental data (Curve A, truncated cone; Curve B, perfect conical punch).
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experimental point on the graph in Figure 9, the force P1 was eval-
uated by Equation (16), and the crack propagation speed, V ¼
�ð1=2ÞdØ=dt, was deduced from the measured value of the local slope
of the tangent of the curve Ø (t) at the point under consideration. The
curve B on Figure 7 (higher symbols on the left-hand side) presents the
values calculated using the results from Figure 9. This curve tends
towards the thermodynamic value w¼ 47mJ.m�2. As previously men-
tioned, one notes that whatever is the imposed separation force,
Pa¼ma�g, the points are found on the same graph G(V), which proves
that the evaluation of the Dupr�ee adhesion energy is again correct.

The slight difference between Curve B and Curve A on Figure 7 is
due to the small variation of environmental conditions between the
two sets of experiments, especially concerning the relative humidity.
It is clearly demonstrated here that, for a same value of the strain
energy release rate, G (along a horizontal line on diagram G(V) in
Figure 7), the crack propagation speed, V, is slightly smaller (Curve B)

FIGURE 9 Kinetics of unloading: diameter, Ø, of the contact area versus
time, t, from the initial mass mi ¼ 5 gm, applied for ti ¼ 10min, to two active
masses ma ¼ �0:6 and �1 gm, for the flat-ended cone (Curves A and A0) and
the perfect one (Curves B and B0). Curves A and B correspond to the applied
massma ¼ �0:6 gm, and Curves A0 and B0 correspond to the massma ¼ �1 gm.
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when the Dupr�ee energy adhesion is increased (w¼ 47mJ.m�2 instead
of 43mJ.m�2), because the ‘‘motor’’ of the crack (G�w) is smaller.

Using the values of the graphs presented on Figure 7 and the values
of w (w¼ 47mJ.m�2 for data from Curve B and w¼ 43mJ.m�2 for data
from Curve A), Equation (20) allows one to draw the variation of the
viscoelastic dissipation function, U, for our natural rubber sample as
a function of the usual parameter aT�V, V being the crack propagation
speed at the interface between the cone, the truncated cone, and the
elastomer sample, and aT, being the shift factor of the WLF
transformation. In the first set of experiments the temperature
h¼ 26�C corresponds to aT¼ 1.43�10�3, whereas in the second one
h¼ 25�C corresponds aT¼ 1.57�10�3. Results are presented in Figure
10 for the reference temperature h¼ 25�C.

Figure 10 regroups all the experimental data of the present study,
which fall on the single master curve U ¼ k � ðaT � VÞ0:55 (heavy
straight line) with k¼ 2520 and the crack propagation speed, V, being
valued using S.I. units. As expected for our rubber-like material,

FIGURE 10 This master curve, which represents the dissipation function, U,
versus the aT � V parameter, regroups all the experimental data obtained in
the present study. The heavy straight line shows U ¼ k � ðaT � VÞ0:55, where
k ¼ 2520 and V are valued using S.I. units, and all the results fit with an ac-
curacy of the order of 1%.
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Figure 10 clearly illustrates that the function U varies as the power
function V 0.55, for a fixed temperature, with a very good accuracy in
the order of 1%.

CONCLUSION

The results of this study incontestably demonstrate and confirm that a
single master curve can be drawn and that the variation U�V0.55 is
characteristic of the propagation in Mode I at the interface of our
rubber material (soft unfilled vulcanized natural rubber, character-
ized by Young’s modulus E¼ .89MPa, Poisson’s ratio m¼ 0.5, and glass-
transition temperature Tg¼ 201K) in contact with a rigid and
optically smooth axisymmetrical punch of convex arbitrary profile,
as much as the viscoelastic losses remain confined to a very small vol-
ume surrounding the crack tip at the spot where the deformation
speeds are high in such a way that the strain energy release rate, G,
can be calculated by use of the theory of linear elasticity. Present
results concerning the adherence of a perfectly axisymmetrical rigid
cone and a truncated one, optically smooth, with the same half-angle,
made of Plexiglass1 (PMMA), lead to the proposition to write the dis-
sipation function, U, as the product U ¼ 2520 � ðaT � VÞ0:55, if the crack
propagation speed V (equal to the variation with time of the radius of
the contact area whose the limit can be seen as a crack tip) is valued in
S.I. units, at the reference temperature h¼ 25�C, with a quite good ac-
curacy in the order of 1%.
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